Add 2022 extras and rm input/samples
This commit is contained in:
parent
7809a82ce7
commit
1d2098a708
30 changed files with 402 additions and 6471 deletions
|
|
@ -1,144 +0,0 @@
|
|||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
510,167 -> 514,167
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
498,175 -> 498,176 -> 505,176
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
489,79 -> 493,79
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
483,85 -> 487,85
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
480,82 -> 484,82
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
494,144 -> 494,145 -> 504,145 -> 504,144
|
||||
486,54 -> 490,54
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
492,60 -> 496,60
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
497,147 -> 497,148 -> 513,148 -> 513,147
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
474,70 -> 478,70
|
||||
466,103 -> 466,104 -> 481,104 -> 481,103
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
471,85 -> 475,85
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
480,70 -> 484,70
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
468,70 -> 472,70
|
||||
480,60 -> 484,60
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
477,68 -> 481,68
|
||||
483,79 -> 487,79
|
||||
495,85 -> 499,85
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
474,82 -> 478,82
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
495,63 -> 499,63
|
||||
489,63 -> 493,63
|
||||
477,79 -> 481,79
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
501,170 -> 505,170
|
||||
497,147 -> 497,148 -> 513,148 -> 513,147
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
489,85 -> 493,85
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
471,68 -> 475,68
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
486,76 -> 490,76
|
||||
483,73 -> 487,73
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
466,103 -> 466,104 -> 481,104 -> 481,103
|
||||
504,167 -> 508,167
|
||||
507,170 -> 511,170
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
507,164 -> 511,164
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
474,66 -> 478,66
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
489,57 -> 493,57
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
480,76 -> 484,76
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
477,63 -> 481,63
|
||||
492,82 -> 496,82
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
513,170 -> 517,170
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
483,57 -> 487,57
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
498,175 -> 498,176 -> 505,176
|
||||
486,60 -> 490,60
|
||||
497,147 -> 497,148 -> 513,148 -> 513,147
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
486,82 -> 490,82
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
477,85 -> 481,85
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
483,63 -> 487,63
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
466,103 -> 466,104 -> 481,104 -> 481,103
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
494,144 -> 494,145 -> 504,145 -> 504,144
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
494,144 -> 494,145 -> 504,145 -> 504,144
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
|
|
@ -4,85 +4,71 @@ input = open("input", 'r')
|
|||
data = []
|
||||
total = 0
|
||||
|
||||
minx = 1000
|
||||
miny = 0
|
||||
maxx = 500
|
||||
maxy = 0
|
||||
ROW = 2_000_000
|
||||
# ROW = 10
|
||||
|
||||
taxicab = lambda x,y: abs(x[0] - y[0]) + abs(x[1] - y[1])
|
||||
tuning = lambda x: 4_000_000*x[0] + x[1]
|
||||
|
||||
minx = 10_000_000
|
||||
maxx = 0
|
||||
|
||||
beaconsRow = set()
|
||||
|
||||
for line in input:
|
||||
nums = line.strip().split(" -> ")
|
||||
tempdata = []
|
||||
for string in nums:
|
||||
x, y = string.split(",")
|
||||
minx = min(minx, int(x))
|
||||
miny = min(miny, int(y))
|
||||
maxx = max(maxx, int(x))
|
||||
maxy = max(maxy, int(y))
|
||||
tempdata.append((int(x), int(y)))
|
||||
data.append(tempdata)
|
||||
line = line.strip()
|
||||
sensor, beacon = line.split(": ")
|
||||
sx, sy = sensor.split(", ")
|
||||
bx, by = beacon.split(", ")
|
||||
sensor = (int(sx.split("=")[1]), int(sy.split("=")[1]))
|
||||
beacon = (int(bx.split("=")[1]), int(by.split("=")[1]))
|
||||
minx = min(sensor[0], beacon[0], minx)
|
||||
maxx = max(sensor[0], beacon[0], maxx)
|
||||
data.append((sensor, beacon))
|
||||
|
||||
minx -= maxy
|
||||
distance = []
|
||||
for sensor, beacon in data:
|
||||
d = taxicab(beacon, sensor)
|
||||
if beacon[1] == ROW and beacon not in beaconsRow:
|
||||
beaconsRow.add(beacon)
|
||||
total -= 1
|
||||
distance.append((sensor, d))
|
||||
|
||||
grid = [["." for _ in range(maxx-minx+1+maxy)] for _ in range(maxy-miny+1)]
|
||||
|
||||
for line in data:
|
||||
for one, two in zip(line, line[1:]):
|
||||
if one[0] == two[0]:
|
||||
i = min(one[1], two[1])
|
||||
a = max(one[1], two[1])
|
||||
for y in range(i, a+1):
|
||||
grid[y-miny][one[0]-minx] = "#"
|
||||
else:
|
||||
i = min(one[0], two[0])
|
||||
a = max(one[0], two[0])
|
||||
for x in range(i, a+1):
|
||||
grid[one[1]-miny][x-minx] = "#"
|
||||
|
||||
# Send sand
|
||||
falling = False
|
||||
while not falling:
|
||||
settled = False
|
||||
sandpos = (500-minx, 0-miny)
|
||||
while not settled:
|
||||
if sandpos[1]+1 >= len(grid):
|
||||
falling = True
|
||||
for x in range(minx*2, (maxx*2+1)):
|
||||
for sensor, dist in distance:
|
||||
psd = taxicab(sensor, (x, ROW))
|
||||
if dist >= psd:
|
||||
# print(x)
|
||||
total +=1
|
||||
break
|
||||
if grid[sandpos[1]+1][sandpos[0]] == ".":
|
||||
sandpos = (sandpos[0], sandpos[1]+1)
|
||||
elif grid[sandpos[1]+1][sandpos[0]-1] == ".":
|
||||
sandpos = (sandpos[0]-1, sandpos[1]+1)
|
||||
elif grid[sandpos[1]+1][sandpos[0]+1] == ".":
|
||||
sandpos = (sandpos[0]+1, sandpos[1]+1)
|
||||
else:
|
||||
grid[sandpos[1]][sandpos[0]] = "o"
|
||||
settled = True
|
||||
total += 1
|
||||
# print(sandpos)
|
||||
|
||||
print(total)
|
||||
|
||||
grid.append(["." for _ in range(maxx-minx+1+maxy)])
|
||||
grid.append(["#" for _ in range(maxx-minx+1+maxy)])
|
||||
found = False
|
||||
for sensor, dist in distance:
|
||||
for dx in range(dist+2):
|
||||
dy = (dist+1) - dx
|
||||
for dirx, diry in [(-1,-1),(-1,1),(1,-1),(1,1)]:
|
||||
x = sensor[0] + (dx*dirx)
|
||||
y = sensor[1] + (dy*diry)
|
||||
if not (0 <= x <= 4_000_000 and 0 <= y <= 4_000_000):
|
||||
continue
|
||||
|
||||
final = False
|
||||
while not final:
|
||||
settled = False
|
||||
sandpos = (500-minx, 0-miny)
|
||||
while not settled:
|
||||
if grid[sandpos[1]+1][sandpos[0]] == ".":
|
||||
sandpos = (sandpos[0], sandpos[1]+1)
|
||||
elif grid[sandpos[1]+1][sandpos[0]-1] == ".":
|
||||
sandpos = (sandpos[0]-1, sandpos[1]+1)
|
||||
elif grid[sandpos[1]+1][sandpos[0]+1] == ".":
|
||||
sandpos = (sandpos[0]+1, sandpos[1]+1)
|
||||
else:
|
||||
if sandpos[1] == 0-miny and sandpos[0] == 500-minx:
|
||||
final = True
|
||||
grid[sandpos[1]][sandpos[0]] = "o"
|
||||
settled = True
|
||||
total += 1
|
||||
# print(sandpos)
|
||||
for row in grid:
|
||||
for column in row:
|
||||
print(column, end="")
|
||||
print()
|
||||
print(total)
|
||||
found = True
|
||||
for sensor, dist in distance:
|
||||
psd = taxicab((x,y),sensor)
|
||||
if psd <= dist:
|
||||
found = False
|
||||
break
|
||||
if found:
|
||||
print(tuning((x,y)))
|
||||
|
||||
|
||||
|
||||
# for x in range(0, 4_000_000):
|
||||
# for y in range(0, 4_000_000):
|
||||
# for sensor, dist in distance:
|
||||
# psd = taxicab(sensor, (x, ROW))
|
||||
# if dist >= psd:
|
||||
# break
|
||||
# print((x,y), tuning((x,y)))
|
||||
|
|
|
|||
|
|
@ -1,2 +0,0 @@
|
|||
498,4 -> 498,6 -> 496,6
|
||||
503,4 -> 502,4 -> 502,9 -> 494,9
|
||||
Loading…
Add table
Add a link
Reference in a new issue